\begin{tabbing} component{-}realizes\=\{i:l\}\+ \\[0ex](${\it ds}$; ${\it da}$; $A$; $B$; $C$; ${\it es}$,${\it in}$,${\it out}$.$P$(${\it es}$;${\it in}$;${\it out}$)) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$\forall$$X$:Interface(${\it ds}$;${\it da}$;$A$).\+ \\[0ex]let $R$,$Y$ = ($C$($X$)) \\[0ex]in \\[0ex]scheme{-}realizes\=\{i:l\}\+ \\[0ex](\=$R$;\+ \\[0ex]${\it es}$.(es{-}decl(${\it es}$;${\it ds}$;${\it da}$) \\[0ex]$\Rightarrow$ $P$(${\it es}$;abs{-}interface(${\it es}$;$X$);abs{-}interface(${\it es}$;$Y$)))) \-\-\- \end{tabbing}